Determining Transmission Eigenvalues of Anisotropic Inhomogeneous Media from Far Field Data

نویسندگان

  • ARMIN LECHLEITER
  • STEFAN PETERS
چکیده

We characterize interior transmission eigenvalues of penetrable anisotropic acoustic scattering objects by a technique known as inside-outside duality. This method has recently been identified to be able to link interior eigenvalues of the penetrable scatterer with the behavior of the eigenvalues of the far field operator for the corresponding exterior time-harmonic scattering problem. A basic ingredient for the resulting connection is a suitable self-adjoint factorization of the far field operator based on wave number-dependent function spaces. Under certain conditions on the anisotropic material coefficients of the scatterer, the inside-outside duality allows to rigorously characterize interior transmission eigenvalues from multi-frequency far field data. This theoretical characterization moreover allows to derive a simple numerical algorithm for the approximation of interior transmission eigenvalues. Since it is merely based on far field data, the resulting eigenvalue solver does not require knowledge on the scatterer or its material coefficient; several numerical examples show its feasibility and accuracy for noisy data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Inverse Electromagnetic Scattering Problem for Anisotropic Media ‡

The inverse electromagnetic scattering problem for anisotropic media plays a special role in inverse scattering theory due to the fact that the (matrix) index of refraction is not uniquely determined from the far field pattern of the scattered field even if multi-frequency data is available. In this paper we describe how transmission eigenvalues can be determined from the far field pattern and ...

متن کامل

A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium

A new method is presented for solving the inverse scattering problem of determining the speed of sound in an inhomogeneous medium from the far-field data. If F (a; k , 6 ) are the far-field data corresponding to an incident plane wave with wavenumber k moving in the direction & and F j , ( f ; k , &) are the far-field data for a ball no containing the inhomogeneous region and satisfying an impe...

متن کامل

Not Return Your Form to the above Organization

We consider the scattering of time harmonic electromagnetic plane waves by a bounded, inhomogeneous, anisotropic dielectric medium and show that under certain assumptions a lower bound on the norm of the (matrix) index of refraction can be obtained from a knowledge of the smallest transmission eigenvalue corresponding to the medium. Numerical examples are given showing the efficaciousness of ou...

متن کامل

The linear sampling method for anisotropic media

We consider the inverse scattering problem of determining the support of an anisotropic inhomogeneous medium from a knowledge of the incident and scattered time harmonic acoustic wave at 1xed frequency. To this end, we extend the linear sampling method from the isotropic case to the case of anisotropic medium. In the case when the coe6cients are real we also show that the set of transmission ei...

متن کامل

The Computation of Lower Bounds for the Norm of the Index of Refraction in an Anisotropic Media from Far Field Data

We consider the scattering of time harmonic electromagnetic plane waves by a bounded, inhomogeneous, anisotropic dielectric medium and show that under certain assumptions a lower bound on the norm of the (matrix) index of refraction can be obtained from a knowledge of the smallest transmission eigenvalue corresponding to the medium. Numerical examples are given showing the efficaciousness of ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014